Moteur Asynchrone

MAS.pdf

Machine asynchrone

 

Machine asynchrone de 8 kW.

La machine asynchrone, connue également sous le terme « anglo-saxon » de machine à induction, est une machine électrique à courant alternatif sans connexion entre le stator et le rotor. Les machines possédant un rotor « en cage d'écureuil » sont aussi connues sous le nom de machines à cage ou machines à cage d'écureuil. Le terme asynchrone provient du fait que la vitesse de ces machines n'est pas forcément proportionnelle à la fréquence des courants qui les traversent.

La machine asynchrone a longtemps été fortement concurrencée par la machine synchrone dans les domaines de forte puissance, jusqu'à l'avènement de l'électronique de puissance. La machine asynchrone est utilisée aujourd'hui dans de nombreuses applications, notamment dans le transport (métro, trains, propulsion des navires), dans l'industrie (machines-outils), dans l'électroménager. Elle était à l'origine uniquement utilisée en moteur mais, toujours grâce à l'électronique de puissance, elle est de plus en plus souvent utilisée en génératrice. C'est par exemple le cas dans les éoliennes.

Pour fonctionner en courant monophasé, les machines asynchrones nécessitent un système de démarrage. Pour les applications de puissance, au-delà de quelques kilowatts, les moteurs asynchrones sont uniquement alimentés par des systèmes de courants triphasés.

Sommaire


  • 1 Historique
  • 2 Présentation
  • 3 Principes généraux
    • 3.1 Glissement d'une machine asynchrone
    • 3.2 Plaque signalétique d'un moteur asynchrone
    • 3.3 Variateur de vitesse
    • 3.4 Démarrage
      • 3.4.1 Démarrage sous tension réduite
        • 3.4.1.1 Démarrage étoile-triangle
        • 3.4.1.2 Démarrage par auto-transformateur
        • 3.4.1.3 Démarrage résistif
      • 3.4.2 Démarrage à tension nominale
        • 3.4.2.1 Démarrage rotorique
        • 3.4.2.2 Moteur Boucherot type α
    • 3.5 Freinage
    • 3.6 Applications
  • 4 Machine asynchrone triphasée
    • 4.1 Constitution
      • 4.1.1 Réalisation du stator
      • 4.1.2 Réalisation du rotor
    • 4.2 Modélisation et mise en équation
      • 4.2.1 Méthode utilisée
      • 4.2.2 Notations
      • 4.2.3 Les courants
        • 4.2.3.1 Au stator
        • 4.2.3.2 Au rotor
      • 4.2.4 Les flux
        • 4.2.4.1 Flux à travers un enroulement statorique
        • 4.2.4.2 Flux à travers un enroulement rotorique
      • 4.2.5 Les tensions
        • 4.2.5.1 Tension aux bornes d'une phase du stator
        • 4.2.5.2 Tension aux bornes d'une phase du rotor
    • 4.3 Schémas équivalents
      • 4.3.1 Schéma général
      • 4.3.2 Schéma ramené au stator
      • 4.3.3 Prise en compte des pertes fer
      • 4.3.4 Identifications des éléments du schéma équivalent
        • 4.3.4.1 Essai en continu
        • 4.3.4.2 Essai au synchronisme : g = 0
        • 4.3.4.3 Essai rotor bloqué et tension réduite : g = 1
    • 4.4 Caractéristiques électromécaniques
      • 4.4.1 Machine alimentée par un système de tensions de fréquence fixe
        • 4.4.1.1 Couple électromécanique en fonction du glissement
        • 4.4.1.2 Couple électromécanique en fonction de la vitesse de rotation
        • 4.4.1.3 Les domaines de fonctionnement de la Machine asynchrone
      • 4.4.2 Machine alimentée par un onduleur
        • 4.4.2.1 Commande en U/f
          • 4.4.2.1.1 Principe
          • 4.4.2.1.2 Mise en équation
          • 4.4.2.1.3 Remarques
          • 4.4.2.1.4 Inconvénients
        • 4.4.2.2 Commande vectorielle
    • 4.5 Bilans de puissance
      • 4.5.1 Bilan de puissance de la machine fonctionnant en moteur
      • 4.5.2 Bilan de puissance de la machine fonctionnant en génératrice
  • 5 Machine asynchrone monophasée
    • 5.1 Dispositifs de démarrage
  • 6 Raccordement
  • 7 Annexes
    • 7.1 Bibliographie en langue française
    • 7.2 Liens internes
    • 7.3 Liens externes
    • 7.4 Notes et références

Historique  

La paternité de la machine asynchrone est controversée. Elle pourrait être attribuée à trois inventeurs : en 1887, Nikola Tesla dépose un brevet sur la machine asynchrone[1],[2], puis en mai de l'année suivante cinq autres brevets. Pendant la même période Galileo Ferraris publie des traités sur les machines tournantes, avec une expérimentation en 1885, puis une théorie sur le moteur asynchrone en avril 1888[3]. En 1889, Michail Ossipowitsch Doliwo-Dobrowolski, électricien allemand d'origine russe, invente le premier moteur asynchrone à courant triphasé à cage d'écureuil qui sera construit industriellement à partir de 1891[4].

Du fait de sa simplicité de construction, d'utilisation et d'entretien, de sa robustesse et son faible prix de revient, la machine asynchrone est aujourd'hui très couramment utilisée comme moteur dans une gamme de puissance allant de quelques centaines de watts à plusieurs milliers de kilowatts.

Quand la machine asynchrone est alimentée par un réseau à fréquence fixe, il est difficile de faire varier sa vitesse. En outre, au démarrage, le couple est faible et le courant appelé est très élevé. Deux solutions historiques ont résolu ce dernier problème : le rotor à encoches profondes et le rotor à double cage mis au point en 1912 par Paul Boucherot. Grâce aux progrès de l'électronique de puissance, l'alimentation par un onduleur à fréquence variable permet maintenant de démarrer la machine convenablement et de la faire fonctionner avec une vitesse réglable dans une large plage. C'est pourquoi il est utilisé pour la motorisation des derniers TGV ainsi que des nouveaux métros parisiens[5],[6].

Présentation 

Rotor (a gauche) et stator (a droite) d'une machine asynchrone 0,75 kW.

La machine se compose de deux pièces principales :

  • Le stator est relié au réseau ou à un variateur de vitesse.
  • Le rotor est constitué de conducteurs en court-circuit qui sont parcourus par des courants induits par le champ magnétique créé par les courants statoriques. C'est la principale différence avec une machine synchrone, laquelle a un rotor avec un champ magnétique provenant d'aimants permanents ou de bobines alimentées en courant continu.

Cette machine peut, selon sa construction, être reliée à un réseau monophasé ou polyphasé (généralement triphasé car c'est celui de la distribution).

La machine asynchrone est une des machine électrique la plus utilisée dans le domaine des puissances supérieures à quelques kilowatts car elle offre alors le meilleur rapport qualité prix. Surtout depuis l'apparition dans les années 1970 de variateurs permettant de faire varier la fréquence de rotation du moteur dans une large gamme[7].

Bien que réversible, la machine asynchrone est principalement (mais pas exclusivement) utilisée en moteur.

Principes généraux 

Les courants statoriques créent un champ magnétique tournant dans le stator. La fréquence de rotation de ce champ est imposée par la fréquence des courants statoriques, c’est-à-dire que sa vitesse de rotation est proportionnelle à la fréquence de l'alimentation électrique. La vitesse de ce champ tournant est appelée vitesse de synchronisme.

L'enroulement au rotor est donc soumis à des variations de flux (du champ magnétique). Une force électromotrice induite apparaît qui crée des courants rotoriques. Ces courants sont responsables de l'apparition d'un couple qui tend à mettre le rotor en mouvement afin de s'opposer à la variation de flux : loi de Lenz. Le rotor se met donc à tourner pour tenter de suivre le champ statorique.

La machine est dite asynchrone car elle est dans l'impossibilité, sans la présence d'un entraînement extérieur, d'atteindre la même vitesse que le champ statorique. En effet, dans ce cas, vu dans le référentiel du rotor, il n'y aurait pas de variation de champ magnétique ; les courants s'annuleraient, de même que le couple qu'ils produisent, et la machine ne serait plus entraînée. La différence de vitesse entre le rotor et le champ statorique est appelée vitesse de glissement.

Lorsqu'il est entraîné au-delà de la vitesse de synchronisme — fonctionnement hypersynchrone — la machine fonctionne en générateur alternatif. Mais son stator doit être forcément relié au réseau car lui seul peut créer le champ magnétique nécessaire pour faire apparaître les courants rotoriques.

Un fonctionnement en générateur alternatif autonome est toutefois possible à l'aide de condensateurs connectés sur le stator, à condition qu'il existe un champ magnétique rémanent. On retrouve cette même problématique lorsqu'on cherche à faire fonctionner des machines à courant continu à excitation série en génératrice. À défaut, des dispositifs d'électronique de puissance et une batterie permettent d'amorcer le fonctionnement en génératrice autonome. Cette solution est mise en œuvre pour produire de l'électricité à l'aide d'éoliennes ou de groupes électrogènes, constitués d'une génératrice couplée à un moteur à combustion interne.

Glissement d'une machine asynchrone 

Le glissement est une grandeur qui rend compte de l'écart de vitesse de rotation d'une machine asynchrone par rapport à une machine synchrone hypothétique construite avec le même stator.

Le glissement est toujours faible, de l'ordre de quelques pourcents : de 2 % pour les machines les plus grosses à 6 ou 7 % pour les petites machines triphasées, il peut atteindre 10 % pour les petites machines monophasées. Les pertes par effet Joule dans le rotor étant proportionnelles au glissement, une machine de qualité se doit de fonctionner avec un faible glissement.

  • On désigne par n_s  \, la fréquence de rotation du champ statorique dans la machine.
  • On désigne par n  \, la fréquence de rotation de la machine.

La fréquence de synchronisme est toujours un sous-multiple entier de la fréquence du secteur

  • En 50 Hz c'est un sous-multiple de 3000 tr/min, soit : 3000 ; 1500 ; 1000 ; 750 ; etc.
  • En 60 Hz c'est un sous-multiple de 3600 tr/min, soit : 3600 ; 1800 ; 1200 ; 900 ; etc.


Soit p \, le nombre de paires de pôles de la machine et  f \, la fréquence de l'alimentation. On a :

n_s = \frac fp\, en tr/s ou n_s = \frac {60 f}{p}\, en tr/min.

Le glissement correspond à la différence de vitesse entre le rotor et le champ statorique exprimée sous la forme d'un pourcentage de la fréquence de rotation.

n_s - n = g \cdot n_s \,, soit g = \frac{n_s-n}{n_s} \,

Le glissement peut aussi être calculé à partir des vitesses angulaires

g = \frac{\omega_s-\omega}{\omega_s} \, avec :
  • \omega_s  \, la vitesse angulaire de synchronisme du champ statorique dans la machine.
  • \omega \, la vitesse angulaire de rotation de la machine.

Plaque signalétique d'un moteur asynchrone 

Exemple de plaque signalétique d'un moteur asynchrone triphasé industriel :

Mot 3~ 50/60Hz IEC34 IP55
MT90L24-4

1.5 / 1.75 kW
1420 / 1710 tr/min
380-420 / 440-480 V - Y
3.7 / 3.6 A
220-240 / 250-280 V - Δ
6.4 / 6.3 A


cos φ = 0.75 / 0.78
Moteur triphasé utilisable en 50 et 60 Hz Plaque établie conformément à la norme internationale IEC34 Classement IP (Indice de protection)
Référence constructeur précisant notamment :

- la taille de la carcasse moteur - le nombre de pôles


Puissance utile nominale
fréquence de rotation nominale
Tension entre phase du réseau d'alimentation pour un couplage étoile
Courant de ligne nominal pour un couplage étoile
Tension entre phase du réseau d'alimentation pour un couplage triangle
Courant de ligne nominal pour un couplage triangle


facteur de puissance au régime nominal
  • Soit on dispose d'un réseau d'alimentation correspondant aux valeurs de tension de la troisième ligne et on doit réaliser un couplage étoile symbolisé par Y (cas le plus fréquent), soit on dispose d'un réseau d'alimentation correspondant aux valeurs de tension de la quatrième ligne et on doit réaliser un couplage triangle symbolisé par Δ. Sur la même ligne, la plaque signalétique indique pour chacun des couplages la valeur de l'intensité du courant de ligne qui sera absorbée au régime nominal.
  • À l'aide de grandeurs électriques fournies : tensions entre phases, intensités des courants de ligne et facteur de puissance, il est possible de calculer la puissance active absorbée et d'en déduire le rendement de la machine fonctionnant au régime nominal.

En monophasé :

P_a =\ U I \cdot \cos \varphi  \,

En triphasé :

P_a =\sqrt 3  \cdot U I \cdot \cos \varphi  \,

Le rendement :

\eta =\frac{P_u}{P_a}  \,

Variateur de vitesse [modifier]

La gamme des variateurs de vitesse d'ABB.

Un variateur de vitesse est un équipement électrotechnique alimentant un moteur électrique de façon à pouvoir faire varier sa vitesse de manière continue, de l'arrêt jusqu’à sa vitesse nominale. La vitesse peut être proportionnelle à une valeur analogique fournie par un potentiomètre, ou par une commande externe : un signal de commande analogique ou numérique, issue d'une unité de contrôle. Un variateur de vitesse est constitué d'un redresseur combiné à un onduleur. Le redresseur va permettre d'obtenir un courant quasi continu. À partir de ce courant continu, l'onduleur (bien souvent à Modulation de largeur d'impulsion ou MLI) va permettre de créer un système triphasé de tensions alternatives dont on pourra faire varier la valeur efficace et la fréquence. Le fait de conserver le rapport de la valeur efficace du fondamental de la tension par la fréquence (U1/f) constant permet de maintenir un flux tournant constant dans la machine et donc de maintenir constante la fonction reliant la valeur du couple en fonction de (ns - n) (voir § 3-4-2-1 ci-dessous).

Article détaillé : Variateur de vitesse (électricité).

Démarrage 

Lors d'un démarrage d'une machine asynchrone, le courant d'enclenchement peut atteindre plusieurs fois le courant nominal de la machine[8],[9]. Si l'application utilise un variateur ou un démarreur, c'est ce dernier qui se chargera d'adapter les tensions appliquées à la machine afin de limiter ce courant. En l'absence de variateur de vitesse, il existe plusieurs méthodes permettant de limiter le courant de démarrage. Elles ont été développées avant l'apparition de l'électronique de puissance mais sont encore utilisées de nos jours dans les installations anciennes ou par mesure d'économie pour des applications ne nécessitant pas de variateur en dehors du démarrage.

Démarrage sous tension réduite 

Plusieurs dispositifs permettent de réduire la tension aux bornes des enroulements du stator pendant la durée du démarrage du moteur ce qui est un moyen de limiter l'intensité du courant de démarrage. L'inconvénient est que le couple moteur est également diminué et que cela augmente la durée avant laquelle la machine atteint le régime permanent.

Démarrage étoile-triangle 

Lors d'un démarrage étoile-triangle, la machine est d'abord connectée au réseau avec un couplage étoile, puis une fois démarrée, on passe sur couplage triangle. Le fait de démarrer avec un couplage étoile permet de diviser par la racine carrée de trois la tension appliquée. Ainsi, le courant maximal absorbé est trois fois plus faible que lors d'un démarrage directement avec un couplage triangle. Le couple de démarrage est lui aussi trois fois plus faible que lors d'un démarrage en triangle. La surintensité lors du passage étoile-triangle est inférieure au courant d'appel d'un démarrage effectué directement en triangle.

Réalisée simplement à l'aide de contacteurs, cette méthode de démarrage est très économique.

Démarrage par auto-transformateur 

Dans ce mode de démarrage, le stator de la machine asynchrone est relié à un auto-transformateur qui permet d'effectuer un démarrage sous tension variable. La tension est progressivement augmentée, l'intensité du courant ne dépassant pas la valeur maximale désirée.

Démarrage résistif 

Lors d'un démarrage résistif, on insère des résistances en série avec les enroulements statoriques ce qui a pour effet de limiter la tension à leurs bornes. Une fois le démarrage effectué, on court-circuite ces résistances. Cette opération peut être effectuée progressivement par un opérateur à l'aide de rhéostats de démarrage.

Démarrage à tension nominale 

Démarrage rotorique 

Lors d'un démarrage rotorique, des résistances de puissance sont insérées en série avec les enroulements du rotor. Ce type de démarrage permet d'obtenir un fort couple de démarrage avec des courants de démarrage réduits mais il ne peut être mis en œuvre qu'avec des machines à rotor bobiné muni de contacts glissants (bagues et balais) permettant les connexions électriques des enroulements rotoriques. Ces machines sont d'un prix de revient plus important que leurs homologues dits à «  cage d'écureuil ».

Moteur Boucherot type α [modifier]
Schéma de principe du moteur Boucherot type α

Les moteurs Boucherot type α ont comme particularité d'avoir un stator divisé en deux. Un des stators est fixe, l'autre peut tourner d'un pas polaire. Le rotor, quant à lui, est doté d'une bague très résistive en son centre. Le démarrage se passe ainsi : dans un premier temps, on décale d'un pas polaire les deux stators. Les courants induits créés par chaque stator sont de directions opposées, ils se rebouclent donc au centre du rotor par la bague très résistive. Au fur et à mesure du démarrage, on décale le demi-moteur mobile afin que les courants induits qu'il crée soient dans le même sens que ceux du moteur fixe. À la fin, les courants créés par les deux demi-stators sont dans le même sens et ne passent plus par la bague très résistive[10].

Ce type de dispositif, bien que permettant de faire varier la résistance rotorique sans avoir recours à un rotor bobiné, n'est plus utilisé à cause de sa complexité.

Freinage 

On distingue plusieurs types de freinage :

  • Arrêt en roue libre : (mise hors tension du stator)
  • Arrêt piloté : Tension statorique progressivement passée à tension nulle
  • Freinage hypersynchrone : lorsque la vitesse du rotor est supérieure à la vitesse du champ tournant, le moteur freine. Couplé à un variateur de fréquence qui diminue progressivement la vitesse du moteur on peut arrêter un moteur. Le couple de freinage est faible : la courbe du couple en fonction de la vitesse (voir les trois domaines de fonctionnement de la machine asynchrone) pour différentes valeurs du glissement montre que le couple résistant n'est pas très important pour un glissement compris entre 0 et -1. Cette méthode n'est donc pas très efficace pour freiner rapidement une machine asynchrone.
  • Arrêt par injection de courant continu : L'alimentation en courant continu du stator crée un champ fixe dans la machine qui s'oppose au mouvement. C'est la méthode la plus efficace pour freiner la machine, mais les contraintes en courant sont également très sévères. La commande de l'intensité du courant continu permet de piloter le freinage.
  • Arrêt à contre-courant :

Le principe consiste à inverser deux phases pendant un court instant. Ceci est donc équivalent à un freinage hypersynchrone, mais à fréquence fixe. Le couple résistant est donc faible et le courant appelé est également très important (de l'ordre de 10 à 12 fois l'intensité nominale). La conséquence en est que les enroulements du moteur risquent un sur-échauffement : on peut prévoir des résistances supplémentaires afin de diminuer l'intensité. Enfin, avec cette méthode, le couple décélérateur reste négatif même lorsque la vitesse est égale à 0 tr/min, il faut donc prévoir de couper l'alimentation quand la vitesse est nulle (temporisation, contact centrifuge), sinon la rotation s'inverse.

  • Freinage mécanique par électro-frein : ce système est constitué d'un frein à disque solidaire de l'arbre de la machine asynchrone et dont les mâchoires initialement serrées hors tension sont commandées par un électroaimant. Après alimentation de l'électroaimant, les mâchoires se desserrent laissant la rotation libre. La coupure de l'alimentation provoque le freinage. Ce dispositif aussi appelé « frein à manque de courant » est souvent prévu comme dispositif d'arrêt d'urgence .

Applications 

  • Traction électrique (Eurostar, TGV POS, TGV Duplex Dasye notamment)
  • Propulsion des navires
  • Machines-outils
  • Ascenseurs
  • Treuils
  • Pompes
  • Électroménager

Machine asynchrone triphasée 

Constitution 

Réalisation du stator

Il est constitué d'un cylindre ferromagnétique entaillé d'encoches permettant d'y loger les bobinages. Ce cylindre est constitué d'un empilement de plaques de tôle afin de limiter les courants de Foucault.

Il est courant de réaliser une protection contre les échauffements anormaux des bobinages en plaçant au cœur de ceux-ci soit un disjoncteur thermique, soit un capteur de température, ceci afin de couper l'alimentation électrique en cas de dépassement d'un seuil déterminé de température.

Afin de réaliser le branchement du moteur au réseau, toutes les connexions sont regroupées dans un boîtier, généralement appelé par les électriciens, plaque à bornes. On y retrouve donc six connexions pour les enroulements statoriques, plus éventuellement celles du capteur de température.

Réalisation du rotor 

On peut distinguer 4 types de rotor :

  • À cage : (rotor en court-circuit) : C'est le plus fréquent. Ce type de rotor a été inventé par Michail Ossipowitsch Doliwo-Dobrowolski au début des années 1890. Ces rotors sont constitués de tôles ferromagnétiques et de barres conductrices régulièrement réparties à la périphérie du rotor. Les barres sont reliées entre elles par deux anneaux de court-circuit (voir figures ci-contre). Les tôles ferromagnétiques servent à guider les lignes de champ tandis que les barres accueillent les courants induits. Pour les moteurs de faible puissance, les rotors sont réalisés à partir d'un empilement de tôles découpées et isolées les unes des autres (feuilletage) dans lesquelles on injecte un matériau conducteur de manière à constituer les barres ainsi que les anneaux de court-circuit. Pour les moteurs de forte puissance, les barres sont insérées dans le rotor puis les anneaux de court-circuit sont soudés ou brasés aux barres[11]. Le matériau constituant les barres et les anneaux de court-circuit est généralement un alliage à base d'aluminium, mais on peut aussi rencontrer du cuivre ou du laiton. En général, les barres sont légèrement inclinées suivant l'axe du rotor afin

13 votes. Moyenne 3.23 sur 5.

Ajouter un commentaire

Vous utilisez un logiciel de type AdBlock, qui bloque le service de captchas publicitaires utilisé sur ce site. Pour pouvoir envoyer votre message, désactivez Adblock.

Créer un site gratuit avec e-monsite - Signaler un contenu illicite sur ce site